ORIGINAL PAPER

Hongxia Luo · Min Wei · Nanqiang Li · Zujin Shi

Zhennan Gu · Xihuang Zhou

Investigation of the electrocatalytic behavior of halogenated acids at a C_{60} -p-tert-butylcalix[8] arene chemically modified electrode

Received: 10 April 2001 / Accepted: 10 July 2001 / Published online: 16 October 2001 © Springer-Verlag 2001

Abstract The C_{60} -p-tert-butylcalix[8]arene (represented as C_{60} -L) chemically modified electrode has two redox wave couples in mixed solvents of MeCN and water (3:2, v/v), corresponding to C_{60} -L in the solution originating from partial film dissolution and from film reaction, respectively. Both the C_{60} -L in the solution state and in the film state exhibit catalytic activity towards the reduction of halogenated acids.

Keywords C₆₀-p-tert-butylcalix[8]arene · Chemically modified electrode · Electrocatalysis · Cyclic voltammetry

Introduction

The electrochemical behavior of fullerenes in solution [1, 2, 3] and in the film state [4, 5, 6] has been widely investigated. In solution, up to six one-electron reversible reduction steps in nonaqueous solvent solutions have been reported for C_{60} [1, 2]. The electrochemically generated $C_{60}^{\ n-}$ anions have been shown to act as catalysts for the reduction of some halides [7, 8, 9, 10, 11]. The voltammetry of the C_{60} film-coated electrode is irreversible owing to structural rearrangements that accompany the $C_{60}^{\ n-/(n+1)-}$ electrode processes [4]. The reduction of 1,2-diiodoethane is catalyzed by both the first and second electroreductions of $C_{60}^{\ n-/(n+1)-}$ at the C_{60} film electrode [9]. An Au electrode modified with a monolayer of a C_{60} carboxylic derivative was reported to provide an active interface for mediating the bioelectrocatalyzed oxidation of glucose [12].

Since 1994, the host-guest complexes of fullerene with calixarenes have become one of the most interesting

research areas in fullerene chemistry. C_{60} and *p-tert*-butylcalix[8]arene (L) form a 1:1 inclusion complex in toluene [13, 14] or carbon disulfide [15]. The unstable electrochemical behavior of C_{60} -*p-tert*-butylcalix[8]arene (C_{60} -L) film was reported by us [16] and by Cliffel and Bard [17]. In mixed MeCN and water, the electrochemical behavior of the C_{60} -L film becomes more stable [18]. In our previous work, the electrocatalysis of some biomolecules and organic compounds at electrodes modified with C_{60} /cyclodextrin or C_{60} /calixarene complexes was investigated [19, 20, 21, 22, 23, 24, 25, 26]. This enables us to explore the electrocatalytic activity of a C_{60} -L film chemically modified electrode.

Experimental

Instruments and chemicals

Cyclic voltammetric (CV) measurements were performed on an EG&G PAR 273 potentiostat/galvanostat with model 270 electrochemical software. All the experiments were performed with a three-electrode configuration at room temperature. A GC working electrode (4 mm in diameter), a platinum counter electrode, and a saturated calomel reference electrode (SCE) were employed in all measurements. Tetra-n-butylammonium perchlorate (Bu $_4$ NClO $_4$) was purchased from Sigma. Acetonitrile and toluene were distilled from P_2O_5 prior to use. All other reagents were of analytical grade. Water was triply distilled from an all-quartz still. High-purity nitrogen was used for deaeration.

The scanning electron microscope (SEM) images were obtained using a Amray 1910FE microscope. X-ray photoelectron spectroscopy (XPS) measurements were performed using a VG Scientific ESCALab220i-XL photoelectron spectrometer.

Preparation of C₆₀-L film

The synthesis of C_{60} -L was the same as described previously [16]. A certain amount of C_{60} -L was dissolved in carbon disulfide to give a 5×10^{-4} M solution. The GC electrode surface was carefully polished with chamois leather containing Al_2O_3 slurry, and ultrasonically cleaned in distilled water and ethanol. The C_{60} -L film chemically modified electrode was prepared by dropping a solution of C_{60} -L (5 μ L, 5×10^{-4} M) on the GC electrode surface and evaporating the solvent under an infrared heat lamp.

H. Luo · M. Wei · N. Li () · Z. Shi · Z. Gu · X. Zhou

Department of Chemistry, Peking University, Beijing 100871, P.R. China

E-mail: lmwx@chem.pku.edu.cn Tel.: +86-10-62757953 Fax: +86-10-62751708

Results and discussion

Electrochemical behavior of the C_{60} -L film modified electrode

Figure 1 shows the continuous cyclic voltammogram of C_{60} -L film in a 3:2 mixed solvent of MeCN and water containing 0.04 M Bu₄NClO₄ as the supporting electrolyte in the potential scan range from 0 to -1.4 V (vs. SCE). Two pairs of reduction/reoxidation waves, Pc_1/Pa_1 and Pc_2/Pa_2 , were obtained. A potential shift between the first and subsequent cycles was observed, implying that there was a structural arrangement accompanying the release of the solvent which was entrapped during the evaporation process and injection of Bu₄N⁺ and a small amount of anions into the film [27, 28, 29]. The cathodic currents changed little after the second cycle, although the current of Pa_2 decreased cycle by cycle. At a scan rate of 0.1 V s⁻¹, the peak potentials of Pc_2 and Pa_2 were -0.95 V and -0.64 V, respectively.

When the potential was reversed at a more positive value, -0.8 V, a small pair of reduction/reoxidation waves was more clearly seen (Fig. 2). Upon continuous scanning, the currents of both the reduction peak and the reoxidation peak did not change much. In our previous work [18], we attributed this small pair of waves to the electrochemical reaction of C_{60} -L in the solution originating from the partial film dissolution, for similar small cathodic and anodic prewaves were also seen on the steady-state voltammograms of the C_{60} film by other researchers [29, 30].

XPS characterization of the C_{60} -L film

XPS experiments were performed to confirm the important role of the large cation, Bu_4N^+ , during the

Fig. 1 Effect of continuous cycling of a C_{60} -L film modified electrode in acetonitrile/water (3:2 v/v) containing 0.04 M Bu₄NClO₄ as supporting electrolyte at a scan rate of 0.1 V s⁻¹

reduction and reoxidation. The XPS spectra of two C_{60} -L film electrodes, one after a linear sweep voltammetric scan, the other after a cyclic voltammetric scan between 0 and -1.5 V, were measured. The N 1s spectrum of the former electrode is shown in Fig. 3A. Two N 1s peaks, located at binding energies of 400.0 and 402.5 eV, respectively, were observed. For the latter electrode, only one N 1s peak at 400.0 eV was apparent (Fig. 3B). The N 1s XPS centering at -402.5 eV resulted from the positively charged nitrogen, indicating the existence of Bu_4N^+ in the film. The N 1s signal at 400.0 V originated from the GC electrode itself (not shown), which is in accordance with the literature [31].

The result mentioned above suggests that, upon reduction, the Bu_4N^+ ion diffuses into the C_{60} -L film to balance the negative charges; after reoxidation, most Bu_4N^+ leaves the film.

SEM characterization of the C₆₀-L film

 C_{60} -L film morphology was studied by SEM techniques. The SEM image of a newly prepared C_{60} -L film on a GC disk (4 mm in diameter) showed irregular column-structured crystallites of different size (Fig. 4, top). After several cycles of potential scan, the structure of the C_{60} -L film changed from crystallite to reticular (Fig. 4, bottom). The result confirmed that a structural arrangement of the C_{60} -L film happened after the potential scan.

In our previous report [18], a two-electron reduction/reoxidation process of the C_{60} -L film was suggested as follows, on the basis of comparison with the CV for the C_{60} film. The reduction process:

$$C_{60}-L(f) + 2Bu_4N^+ + 2e^- \rightarrow (Bu_4N^+)_2(C_{60}-L)^{2-}(f)$$
(1)

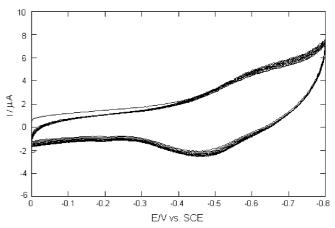
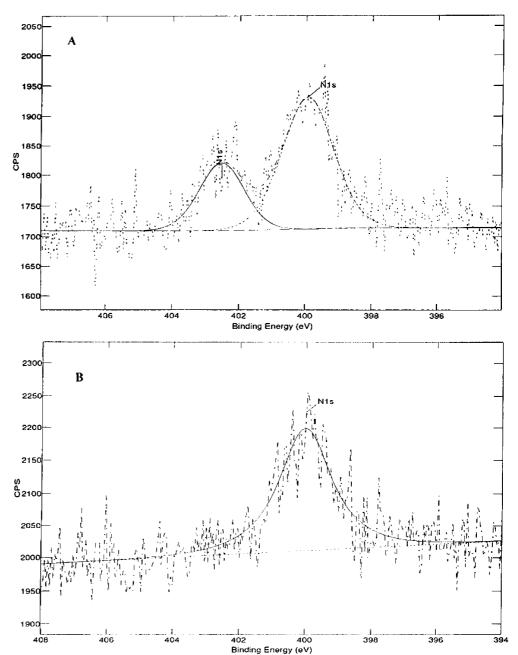



Fig. 2 Effect of continuous cycling of C_{60} -L film modified electrode in acetonitrile/water (3:2 v/v) containing 0.04 M Bu₄NClO₄; scan rate 0.1 V s⁻¹

Fig. 3 XPS spectra of the N 1s region of C_{60} -L film on a GC electrode after a linear sweep voltammetric scan (A) and after a cyclic voltammetric scan (B) in the potential range from 0 to -1.5 V (vs. SCE) in acetonitrile/water (3:2 v/v) containing 0.04 M Bu₄NClO₄

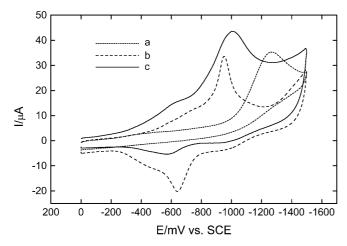
and the reoxidation process:

$$(Bu_4N^+)_2(C_{60}-L)^{2-}(f) \rightarrow C_{60}-L(f)+2Bu_4N^++2e^-$$

where "f" represents the film on the GC electrode.

Electrocatalytic reduction of halogenated acid at the C_{60} -L modified electrode

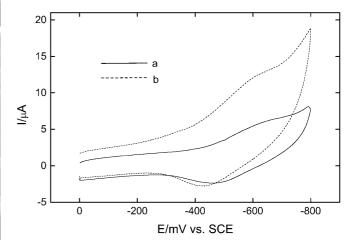
Monochloroacetic acid (MA) showed an irreversible reduction peak at -1.27 V on the bare GC electrode in 0.04 M Bu₄NClO₄ in 3:2 mixed acetonitrile/water

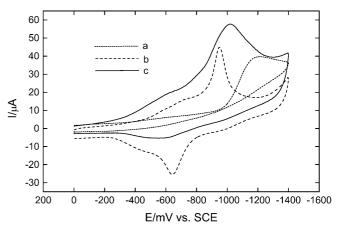

(Fig. 5a), while the C_{60} -L modified electrode showed a stable cyclic voltammetric response in the potential range from 0 to -1.5 V (Fig. 5b). As shown in Fig. 5c, when 1.0×10^{-3} M MA was added to the solution, the reduction of MA at -1.27 V disappeared, and a considerable electrocatalytic reduction peak at -1.00 V was observed at the C_{60} -L modified electrode while the reoxidation peak of C_{60} -L at -0.64 V decreased significantly. This result suggests that the electroactive C_{60} -L in the modified electrode acts as an electron transfer mediator to the reduction of MA.

When the potential scan range was restricted to 0 to -0.8 V, the C_{60} -L film electrode showed a stable cyclic voltammogram (Fig. 6a), corresponding to the redox process of dissolved C_{60} -L in the solution, as discussed

above. When 1.0×10^{-3} M MA was added to the solution, the cathodic peak current increased greatly, accompanying a little positive potential shift (Fig. 6b), indicating that the C_{60} -L in the solution also can electrocatalyze the

32,498XD 5.88 kV 1µm 2 mm CL:9.8


Fig. 4 SEM images of newly prepared C₆₀-L film on a GC disk (*top*) and after three cycles of potential scans in the range from 0 to –1.5 V in acetonitrile/water (3:2 v/v) containing 0.04 M Bu₄NClO₄ (*bottom*)


Fig. 5 Cyclic voltammograms for a bare (a) and C_{60} -L modified GC electrode in the absence of MA (b) and in the presence of 1 mM MA (a and c) in acetonitrile/water (3:2 v/v) containing 0.04 M Bu₄NClO₄. Scan rate 0.1 V s⁻¹; potential range 0 to -1.5 V

reduction of MA. Moreover, D'Souza et al. [9, 10, 11] have reported that the electrochemically generated C_{60}^{n-} anions act as catalysts for the reduction of some halides. According to our present work, the C_{60} -L anion can also electrocatalyze the reduction of halogenated acids just like the performance of C_{60} anions.

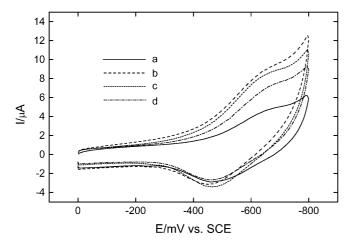

The reductions of dichloroacetic acid, α -bromoacetic acid, α -bromopropionic acid, and α -bromobutyric acid were found to be electrocatalyzed at the C_{60} -L modified electrode. Figure 7 shows the catalytic reduction of dichloroacetic acid at the C_{60} -L modified electrode, which was similar to that of MA. Figure 8 shows the reductions of α -bromoacetic acid, α -bromopropionic acid, and α -bromobutyric acid at the C_{60} -L modified electrode in the potential range from 0 to–0.8 V, corresponding to the electrocatalytic reduction process by C_{60} -L in solution. Under the conditions of the same

Fig. 6 Cyclic voltammograms for a C₆₀-L modified GC electrode in the absence of monochloroacetic acid (*a*) and in the presence of 1 mM MA (*b*) in acetonitrile/water (3:2 v/v) containing 0.04 M Bu₄NClO₄. Scan rate 0.1 V s⁻¹; potential range 0 to -1.5 V

Fig. 7 Cyclic voltammograms at a bare (a) and C_{60} -L modified GC electrode in the absence of dichloroacetic acid (b) and in the presence of 1 mM dichloroacetic acid (a and c) in acetonitrile/water (3:2 v/v) containing 0.04 M Bu₄NClO₄. Scan rate 0.1 V s⁻¹; potential range 0 to -1.5 V

Fig. 8 Cyclic voltammograms at C_{60} -L modified GC electrode in the absence of halogenated acid (*a*) and in the presence of 1 mM α-bromoacetic acid (*b*), 1 mM α-bromopropionic acid (*c*), or 1 mM α-bromobutyric acid (*d*) in acetonitrile/water (3:2 v/v) containing 0.04 M Bu₄NClO₄. Scan rate 0.1 V s⁻¹; potential range 0 to -0.8 V

concentration of the three α -substituted bromo acids, the electrocatalytic reduction current decreased in the order: α -bromoacetic acid > α -bromopropionic acid > α -bromobutyric acid.

D'Souza et al. [10] reported the electrocatalytic reduction of α,ω -dihaloalkanes, $X(CH_2)_mX$ (X=CI, Br, I; m=2-8) by both the di- and trianions of C_{70} . The initial electron transfer to $X(CH_2)_mX$, to produce the radical $X(CH_2)_mX$, was assumed to be the rate-determining step governed by an outer-sphere electron transfer mechanism, and the subsequent reactions could follow the formation of this radical. On the basis of this previous report [10] and our experimental results, the mechanism of the catalytic reduction of these five halogenated acids might be expressed as follows:

$$C_{60}L_2(f) + 2Bu_4N^+ + 2e^- \rightarrow (Bu_4N^+)_2[C_{60}L_2]^{2-}(f)$$
 (3)

$$(Bu_4N^+)_2[C_{60}L_2]^{2-}(f) + RCl$$

$$\rightarrow (Bu_4N^+)[C_{60}L_2]^{-}(f) + Bu_4N^+ + R^{\bullet} + Cl^{-}$$
(4)

$$(Bu_4N^+)[C_{60}L_2]^-(f) + R^{\bullet} \to C_{60}L_2(f) + Bu_4N^+ + R^-$$
(5)

$$R^- \xrightarrow{+H^+sol} RH$$
 (6)

where RX represents the halogenated organic acid.

Conclusions

The C_{60} -L chemically modified electrode had two redox wave couples in mixed solvents of MeCN and water (3:2,

v/v), corresponding to the reactions of C_{60} -L in the solution state and film state, respectively. Both of the two states of C_{60} -L served as electron transfer mediators towards the reduction of halogenated acids.

Acknowledgements This project was supported by the National Natural Science Foundation of China (grant nos. 29835110 and 29981001) and by the China Postdoctoral Science Foundation.

References

- Xie Q, Pérez-Cordero E, Echegoyen L (1992) J Am Chem Soc 114:3978
- 2. Ohsawa Y, Saji T (1992) J Chem Soc Chem Commun 781
- 3. Zhou F, Jehoulet C, Bard AJ (1992) J Am Chem Soc 114:11004
- Chlistunoff J, Cliffel D, Bard AJ (1995) Thin Solid Films 257:166
- Szucs A, Loix A, Nagy JB, Lamberts L (1995) J Electroanal Chem 297:191
- Davis JJ, Hill HAO, Kurz A, Leighton AD, Safronov AY (1997) J Electroanal Chem 429:7
- 7. Huang Y, Wayer DDM (1993) J Am Chem Soc 115:367
- Fuchigami T, Kasuga M, Konno A (1996) J Electroanal Chem 411:115
- D'Souza F, Choi J, Hsieh Y-Y, Shriver K, Kutner W (1998)
 J Phys Chem B 102:212
- 10. D'Souza F, Choi J, Kutner W (1998) J Phys Chem B 102:4247
- 11. D'Souza F, Choi J, Kutner W (1999) J Phys Chem B 103:2893
- Molina A, Serna C, Gonazález J (1998) J Electroanal Chem 454:15
- 13. Atwood JL, Koutsantonis GA, Raston CL (1994) Nature 368:229
- 14. Suzuki T, Nakashima K, Shinkai S (1994) Chem Lett 699
- Williams RM, Zwier JM, Verhoeven JW, Nachtegaal GH, Kentgens PM (1994) J Am Chem Soc 116:6965
- Li N-Q, Zhou B, Luo H-X, He W-J, Shi Z-J, Gu Z-N, Zhou X-H (1998) J Solid State Electrochem 2:253
- 17. Cliffel DE, Bard AJ (1998) Anal Chem 70:4146
- 18. Luo H-X, Li N-Q, He W-J, Shi Z-J, Gu Z-N, Zhou X-H (1998) Electroanalysis 10:576
- 19. Li M-X, Li N-Q, Gu Z-N, Zhou X-H, Sun Y-L, Wu Y-Q (1997) Electroanalysis 9:873
- Li M-X, Li N-Q, Gu Z-N, Zhou X-H, Sun Y-L, Wu Y-Q (1997) Anal Chim Acta 356:225
- 21. Li M-X, Li N-Q, Gu Z-N, Zhou X-H, Sun Y-L, Wu Y-Q (1998) Talanta 46:993
- 22. Li M-X, Li N-Q, Gu Z-N, Zhou X-H, Sun Y-L, Wu Y-Q (1998) Electroanalysis 10:1057
- Li M-X, Li N-Q, Gu Z-N, Zhou X-H, Sun Y-L, Wu Y-Q (1999) Microchem J 61:32
- Wei M, Li M-X, Li N-Q, Gu Z-N, Zhou X-H (2001) Talanta 53:1045
- Liu T, Li M-X, Li N-Q, Shi Z-J, Gu Z-N, Zhou X-H (2000)
 Talanta 50:1299
- Liu T, Li M-X, Li N-Q, Gu Z-N, Zhou X-H (2000) Electrochim Acta 45:4457
- Zhou F, Yau S-L, Jehoulet C, Laude DA, Guan Z Jr, Bard AJ (1992) J Phys Chem 96:4160
- 28. Koh W, Dubois D, Kutner W, Jones MT, Kadish KM (1993) J Phys Chem 97:6871
- 29. Jehoulet C, Obeng YS, Kim YT, Zhou F, Bard AJ (1992) J Am
- Chem Soc 114:4237 30. Liu C, Dong S, Cheng G, Sun DY (1996) J Electrochem Soc
- 143:3874 81. Shaufuß A, Wittstock G (1999) J Solid State Electrochem
- 3:361 State Electrochem